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Abstract A spin-wave theory is developed for the canting antifemmagnetism by using the 
Holstein-Primakoff transformation. The c o d o n  arising from interactions between spin waves 
can he obtained easily in this theory. The theory is applied to study the field-induced transition 
in LazCuOd when the magnetic field is perpendicular to the C n R  plane. The temperature 
dependence of the critical magnetic field predicted by our theory agrres fakly well with 
experiment at low tempera“. The correction terms are quite small at low temperahlres, 
where the theory fits experiment well. This means that the simple theory, neglecting spin-wave 
interactions, is sufficient for practical purposes. 

1. Introduction 

LazCuO4 undergoes a transition from antiferromagnetic order to weak ferromagnetic order 
when a sufficiently large magnetic field H is applied perpendicular to the C u 0 2  planes at 
a temperature below the N U  temperature TN. This was first discovered by Thio er a[ [l] 
through measurements of the magnetic moment and the magnetoresistance as a function of 
magnetic field H and temperature T, and it was later confirmed by other research groups 
v-41. 

Thio et a1 [l] pointed out that their measurement demonstrates that LazCuO4 is a canting 
antiferromagnetism, and suggested the following picture for the observed magnetic field- 
induced transition in LazCu04. Due to the Dzyaloshinskii-Moriya (DM) superexchange 
interaction, the spins of Cu2+ are canted out of the CuOz plane by a small angle. Each 
CuOz plane thus carries a ferromagnetic moment, but the net moment at H = 0 is zero 
because the antiferromagnetic interplanar coupling causes altemate planes to cant in opposite 
directions. However, above a critical field H,(T), the canting angles in all planes align in 
the same direction, and so a transition from antiferromagnetic to weak ferromagnetic order 
is observed. In their paper, Thio et a1 also developed a mean field theory for this field- 
induced transition. However, as Kastner et al [Z] pointed out, the phase transition can be 
described by the theory of Thio et al close to the N&l temperature only. 

In the present paper we ay to treat this transition via a spin-wave theory. The spiu- 
wave energy spectrum for the canting antiferromagnetism is derived in [3] and [5-71 by a 
procedure of linearizing the equations of motions for the spin operators with respect to small 
deviations mund  the classical ground state. In this paper we develop a spin-wave theory 
for the canting antiferromagnetism by using the Holstein-Makoff (HP) transformation [7. 
81, and study the field-induced transition in LazCu04 when the magnetic field is applied 
perpendicular to the CuOz plane. Moreover, the spin-wave interactions have also been 
included (to first order in l/S). 
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The paper is organized as follows. In section 2 we develop the spin-wave theory, with 
the model given in section 2.1 and the spin-wave theory for the canting antiferromagnetism 
using the Hp method including the spin-wave interactions in section 2.2. Comparison 
between our theory and experiment, together with discussion, are in section 3. 

2. Spin-wave theory 

2.1. Model 

The spins of Cuz+ in a CuOz plane form a square lattice. We choose the x axis to be 
perpendicular to the CuOz plane and the y and z axes to be lying in the plane, as shown in 
figure l(a). We separate the lattice into sublattices A and B. As a model for our study, we 
consider a set of CuOz planes with weak antiferromagnetic interplanar coupling (figure l(b)). 

. . . 
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P 
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(a) 

Figure 1. (a) CuoZ plane. Only the Cu2+ spin sites are shown. (b) Sketch of the model used. 
The horizontal line refers to the CuO2 plane. Full circle: sublattice A; open circle: sublattice B. 

The Hamiltonian 7-1 of the system is composed of two parts: ct 'He, the sum of the 
planar Hamiltonians, and 7-11, the antiferromagnetic coupling between the planes, i.e. 

7-1 = C7-1' + 7-11 
e 

He = 7-1tX +HkM f31: 
HL = 1 JLS$ . S&+i + C JJ.S:~ * S$+i. (3) 

(2) 

t i  t i  

Here and in the following e labels the planes and i, j labels the site, 7-1:x is the Heisenberg 
exchange Hamiltonian of the lth plane, XhM denotes the DM interaction which causes a 
small canting out of the CuOz plane, and 7.15: is the Zeeman energy of spins in the magnetic 
field H = ( H ,  0,O). They are as follows: 

(4) ZZSA SB nL = x(JnS;fC:xS?+6,e:x  f J y y s & y s ~ 8 , L : y  f l,Gz i+a,c;z) 
i.6 

%M = Dh+8 ' 'tt sL&.C (5) 
i.6 
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The 6 summation NnS over the four nearest neighbours of i. J x x ,  JYY and JLL are slightly 
different from each other with JLL being the largest. This anisotropy causes the staggered 
moment lying in the direction of the z axis. The DM vector DL+6 (with i E A and 
i + 6 E B) is along the y axis. It should be noted that the direction of preferred canting 
altemates between adjacent CuOz planes when H is zero. This alternation requires [IO] 
Dft+* = -DfL\. Combined with the symmetries given by Coffey e t d  [9], DL,, reads 

DLG = (-1)"'Djj. (7) 

z 

F i p  2. The spin srmchlre under a magnetic field perpendicular to Ihe CuO2 plane. Full 
circle: sublanice A; o w  circle: sublattice B. 

Table 1. Definition of BA,? 

A t i s  odd e is even 

A 2 z - q  -B 
B n+y, n--B 

Before applying the HP transformation to the Hamiltonians (1)-(6), we introduce a new 
local coordinate system (f, y ,  2) at each site to ensure that the axis i coincides with the real 
canting direction of that site (see figure 2). The local coordinate system (5, y .  i) can be 
obtained from the original coordinate system ( x ,  y. z )  by rotating the latter about the y axis 
through an an@e @A,(. Here A stands for 'A' or 'B', and the angle 0h.e is defined in table 1. 
(.?&:,, .?&.., S&.,) Sie, and the three components of the spin operator at site (e, i, A) 

through the transformation [ 1 I]: 
in the local coordinate system (f, y ,  Z), can be obtained from StQy, SiQz) Si.e A 

sl;, = exp(eA,tcx)g& (8) 

where 5 is the unit vector along the y axis. By using equation (S), we transform the 
Hamiltonian 'H into a form expressed in terms of i&., .?icy and $'Q.. 

At this point we decompose the product of spin operators appearing in 'HL in the mean 
field approximation. This is reasonable since the interplanar coupling JJ. is weak [U]. We 
stress that this approximation is not essential in our theory, but it does make our theory 
simple and direct without losing the physics of the problem. In this way, we obtain 



6538 Ming-Wei Wu et al 

2NL is the number of planes and NI,  denotes the number of sites in one Cu& plane. 'Hk 
is the effective Hamiltonian of the tth plane and is given by 

'H& = ~ ( ~ " L ? $ ~ ' S ~ , ~ ,  - JF~~S&..(:IS~B+~,L;~ - JFi&xi&x) 
i.6 

where 

In deriving the above equations, the relations (iiez) = Se and 
used. 

= (Sicy) = 0 are 

2.2. Spin-wave theory 

Now substitute the following Holstein-Primakoff transformation: 

and 

with f&) = ( 1  - aiiati/2S)1p and gti (S)  = (1 - bf,bti/2S)'/', into the Hamiltonian 7-l. 
and perform the Fourier transformations of sei, a i  and bu, b!;: 

aet = mCe'hatm a, t - - mCe-Pmah  
m m 
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and similarly for bet and bj,. Furthermore, we use the new operators q k ,  CY:, and &, & 
defined by 

where 

At = 4SJy - 2JlSe+1 cos(f3A.C - tb ,e+d + gCLBHsineA.8 

Bc=2SJ,XX+2SJyy De=2SJ,XX-2SJyY. (15) 

yk = k(cosk,a + coskya) with a the lattice constant of the square lattice. Then the 
Hamiltonian can be separated into linear, quadratic and higha-order terms of the operators 

t w k ,  aa and B t k ,  fit,. The canting angles 9 and (p are found from the vanishing of the 
coefficients of the terms linear in the boson operators in the expansion 1131 and to order 
S'/2 we have 

4J7& - g p B H C O S @ A e  - 2J~Se+1 sin(& - &+I) = 0. (16) 

Here 

and 

nf' = [exp(pQ(k, e ) ) -  11-l is the Bose function with Q(k, e)  the energy spectrum defined 
below. at, be, de, et and ke, l e .  me, te, arising from the spin-wave interactions, contribute to 
the terms of order S''2 and if one only retains the lowest order, i.e. neglects the spin-wave 
interactions, they can be treated as zero and hence st = S. Then equation (16) is same 
as that obtained from equations of motion which characterize the classical motion. One 
point should be noted: there exist four small quantities, D ,  J I ,  JLL - Ju and Jzz - J Y Y ,  in 
OUT problem and all of them play important roles in determining the canting angles and the 
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critical magnetic field H, of the transition. If D = Jl= JLL - J” = Jz‘ - JYY = 0, then 
be = d, = kt = tc = D, = 0. Both our numerical computation and the analysis of order 
of magnitude show it will be sufficiently accurate if we retain terms only to the first order 
of b,, dl, k,, tt and 0,. Hence, in the following, terms of these quantities of higher order 
have been dropped. By picking up all terms to order 1/S,  the Hamiltonian (10) now reads 

Ming- Wei Wu et a1 

l.t = c + N,. ( ~ [ o ( k .  e )  - (A, - w k )  + W A ,  e)  (neb +niK-k)l 
k 1 . 2  k 

in which 

which arises from the 1/S expansion. Gt = 4 S J F .  To the order 9 (namely with the 
spin-wave interactions neglected), Q(k.8) = 0, the energy spectrum (21) is written as 
Q ( k ,  e )  = o ( k , e ) .  In the special case where Jl = 0, this spectrum is the same as that 
given in [3] and [5-71. Specifically, if we further let Jxx = JYY = Jzz  = J and H = 0 in 
our spectrum, the result o ( k )  = 4SJ[h~(hn  + y k ) ( l -  yk)]’”, which is given by Coffey 
et d [9], can be obtained, with AD = [ 1 +  (D/J)2]”2 .  The expressions for W i ( k l ,  k2, e )  
( i  = 1 ,  2, 3) are given in the appendix. K = (?r/a, x/a)  and S, is given by 
St = S - (a:iaci) = S - (btibci) t 

(22) 
1 1 Q (k0  1 

Nil , / m C o t h 2 k s T  2 
=s--c + -. 

The free energy per site now reads 
F = C F ~  
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3. Numerical results and discussion 

It is easy to verify that when H = 0, p = 19 = $tan-'(2D/(Jz2 + J x x ) )  is a solution 
of equations (16). For a given temperature T, we solve equations (16), (22) and (23) 
numerically to study how the canting angles C+, p and the corresponding free energy evolve 
with the magnetic field H fiom the H = 0 solution. Such canting states are stable only 
when H is sufficiently small. As H exceeds a critical value H,(T), it becomes unstable and 
then changes to the state with p = ir + C+ (see figure 2). In this way, the critical magnetic 
field H,(T) is determined. 

h 
N 

- a  50 100150209-250300300350450 
TEMPERATURE ( K ) 

Figure 3. Square of the critical field H. as 
a function of temperature. Full curve: theory 
with spin-wave interactions included, dolted 
curve: theoly with spin-wave interactions 
neglected. Experimental points: v and A from 
[U; e from 121. 

The variation of If: against temperature T is plotted in figure 3, where the full 
curve is that predicted by our theory with spin-wave interactions included and S = 4. 
In our computation, we choose JL' 129 meV, JLL - JYY = 4.64 x 1@ meV, 
Jzz - J x x  = 5.66 x meV and D = 0.55 meV, which coincide with the values given by 
Peters et a1 [3] within the experimental uncertainty, and JI = 2.122 peV which is between 
the value 2 peV used by Thio et al [I] and the values 3 peV used by Peters et al [3]. The 
lowest-order case, which is obtained by letting a, = bt = de = et = kt = Z t  = me = tt = 0 
in equations (16) and (20x23). is also plotted in the same figure as a dotted curve. The 
experimental data shown in figure 3 are taken from [ I ]  and [2] .  We see from the figure 
that our theory fits fairly well with the experiment only at low temperatures, ranging from 
0 to 175 K. In our calculation we find that the transition from antiferromagnetic to weak 
ferromagnetic order is a first-order transition for all temperatures, however in the report of 
Kastner et a1 this is true only at low temperatures. This is not surprising as the spin-wave 
theory only holds at low temperatures. Finally, we can see from the figure that inclusion of 
spin-wave interactions (SWI) has little effect on the critical field H,(T) at low temperatures 
ranging from 0 to 160 K where both theories fit the experimental points fairly well. At high 
temperatures, however, SWI markedly reduce H,(T). 
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